.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_sgl_path.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_sgl_path.py: ======================================= Visualizing the SGL regularization path ======================================= Computes SGL path using the function ``sgl_path`` along the regularization parameter on a synthetic dataset. Each color represents a different feature group in the coefficient vector, and this is displayed as a function of the regularization parameter. When alpha is very large, the regularization effect dominates and the coefficients tend to zero. As alpha tends toward zero the solution tends towards the ordinary least squares. When a group of covariates goes to zero (indicated by the dashed vertical line), this relieves the regularization penalty on the other groups, creating "jumps" in the magnitudes of the other covariate groups. In practise it is necessary to tune alpha (and l1_ratio) to best fit the training data. .. GENERATED FROM PYTHON SOURCE LINES 22-70 .. image-sg:: /auto_examples/images/sphx_glr_plot_sgl_path_001.png :alt: SGL ($\lambda=0.5$) regularization path :srcset: /auto_examples/images/sphx_glr_plot_sgl_path_001.png :class: sphx-glr-single-img .. code-block:: default import groupyr as gpr import matplotlib.pyplot as plt import numpy as np X, y, groups, coef = gpr.datasets.make_group_regression( n_samples=400, n_groups=10, n_informative_groups=3, n_features_per_group=10, n_informative_per_group=3, noise=200, coef=True, random_state=10, shuffle=True, ) path_coefs, path_alphas, path_iters = gpr.sgl_path( X, y, l1_ratio=0.5, groups=groups, eps=0.001, n_alphas=200, max_ier=1000, tol=1e-3 ) group_means = np.array([np.linalg.norm(path_coefs[grp], axis=0) for grp in groups]) zero_idx = np.array( [np.max(np.where(group_means[i] == 0)[0]) for i in range(len(groups))] ) fig, ax = plt.subplots(2, 1, figsize=(8, 10), sharex=True) cmap = plt.get_cmap("tab10") for grp, color, z_idx in zip(groups, cmap.colors, zero_idx): _ = ax[0].semilogx( path_alphas, np.abs(path_coefs[grp][:-1].transpose()), color=color ) _ = ax[0].axvline(path_alphas[z_idx], ls=":", color=color) _ = ax[1].axvline(path_alphas[z_idx], ls=":", color=color) _ = ax[1].semilogx(path_alphas, group_means.transpose()) _ = ax[1].set_xlabel(r"$\log(\alpha)$", fontsize=16) _ = ax[0].set_ylabel(r"$\left| \hat{\beta} \right|$", fontsize=16) _ = ax[1].set_ylabel( r"$\left| \left| \hat{\beta}^{(\ell)} \right| \right|_2$", fontsize=16 ) _ = ax[0].set_title(r"SGL ($\lambda=0.5$) regularization path", fontsize=16) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 10.286 seconds) .. _sphx_glr_download_auto_examples_plot_sgl_path.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sgl_path.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sgl_path.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_