.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_classifier.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_classifier.py: ====================================================== Logistic Sparse Group Lasso for grouped sparse signals ====================================================== Estimates a Sparse Group Lasso logistic regression model on a simulated sparse signal. The estimated important features are compared with the ground-truth. .. GENERATED FROM PYTHON SOURCE LINES 11-73 .. image-sg:: /auto_examples/images/sphx_glr_plot_classifier_001.png :alt: Estimated coefficients with ground truth imporant features highlighted :srcset: /auto_examples/images/sphx_glr_plot_classifier_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Indices of ground-truth informative features: [200 201 203 205 208 209 211 212 214 217 240 243 244 245 246 251 252 256 257 259 261 262 264 267 271 272 274 276 277 279] Indices of non-zero estimated coefs: [201 212 214 217 240 245 256 257 261 262 264 272 274 276 277] | .. code-block:: default import numpy as np from matplotlib import pyplot as plt from groupyr import LogisticSGLCV from groupyr.datasets import make_group_classification X, y, groups, idx = make_group_classification( n_samples=100, n_groups=20, n_informative_groups=3, n_features_per_group=20, n_informative_per_group=10, n_redundant_per_group=0, n_repeated_per_group=0, n_classes=2, scale=100, useful_indices=True, random_state=1729, ) _, n_features = X.shape model = LogisticSGLCV( groups=groups, l1_ratio=[0.80, 0.90], n_alphas=40, tol=1e-3, eps=1e-2, cv=3 ).fit(X, y) plt.plot( np.arange(n_features), model.coef_, marker="o", mfc="black", mec="none", ms=3, mew=0, ls="", label="coefficients", ) plt.plot( np.arange(n_features)[idx], model.coef_[idx], marker="o", mfc="none", mec="green", ms=5, mew=3, ls="", label="informative features", ) plt.title("Estimated coefficients with ground truth imporant features highlighted") plt.legend(loc="best") plt.xlabel("Feature index") plt.ylabel("Coefs") plt.show() print("Indices of ground-truth informative features:") print(np.where(idx)[0]) print("Indices of non-zero estimated coefs:") print(model.chosen_features_) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 39.014 seconds) .. _sphx_glr_download_auto_examples_plot_classifier.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_classifier.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_classifier.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_