.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_balanced_classifier.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_balanced_classifier.py: ================================================== Specifying a scoring criterion for model selection ================================================== Estimates a Sparse Group Lasso logistic regression model on a simulated sparse signal with highly imbalanced data. Model hyperparameters are chosen through cross-validation. The first model uses default parameters and chooses hyperparameters to maximize accuracy, while the second model uses F1 score to choose hyperparameters. The model chosen through F1 scoring shows a modest increase in both F1 score and accuracy. .. GENERATED FROM PYTHON SOURCE LINES 14-150 .. image-sg:: /auto_examples/images/sphx_glr_plot_balanced_classifier_001.png :alt: Model selection by:, accuracy, F1 score :srcset: /auto_examples/images/sphx_glr_plot_balanced_classifier_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Model Metric Score ----------------------------------- default accuracy 0.920 F1 accuracy 0.920 default F1 score 0.167 F1 F1 score 0.167 default balanced accuracy 0.596 F1 balanced accuracy 0.596 | .. code-block:: default import numpy as np from matplotlib import pyplot as plt from groupyr import LogisticSGLCV from groupyr.datasets import make_group_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, balanced_accuracy_score, f1_score X, y, groups, idx = make_group_classification( n_samples=1000, n_groups=20, n_informative_groups=3, n_features_per_group=20, n_informative_per_group=15, n_redundant_per_group=0, n_repeated_per_group=0, n_classes=2, scale=100, useful_indices=True, random_state=1729, weights=[0.97, 0.03], ) # Here we split the data into train and test splits # In order to inflate the effect of choosing the F1 score for cross-validation, # we neglect to stratify the train/test split. # In practice, we would want to provide the ``stratify=y`` parameter. X_train, X_test, y_train, y_test = train_test_split(X, y) # Common keyword arguments kwargs = dict(groups=groups, l1_ratio=0.5, n_alphas=40, tol=1e-2, cv=3, random_state=0) # Train a model with default scoring (i.e. accuracy) default_model = LogisticSGLCV(**kwargs).fit(X_train, y_train) # And a model with F1 scoring f1_model = LogisticSGLCV(scoring="f1", **kwargs).fit(X_train, y_train) # The model selected using F1 score performs better than the one selected using accuracy. header = "{model:10s}{metric:20s}{score:5s}" row = "{model:10s}{metric:20s}{score:5.3f}" print(header.format(model="Model", metric="Metric", score="Score")) print("-" * len(header.format(model="", metric="", score=""))) print( row.format( model="default", metric="accuracy", score=accuracy_score(y_test, default_model.predict(X_test)), ) ) print( row.format( model="F1", metric="accuracy", score=accuracy_score(y_test, f1_model.predict(X_test)), ) ) print() print( row.format( model="default", metric="F1 score", score=f1_score(y_test, default_model.predict(X_test)), ) ) print( row.format( model="F1", metric="F1 score", score=f1_score(y_test, f1_model.predict(X_test)) ) ) print() print( row.format( model="default", metric="balanced accuracy", score=balanced_accuracy_score(y_test, default_model.predict(X_test)), ) ) print( row.format( model="F1", metric="balanced accuracy", score=balanced_accuracy_score(y_test, f1_model.predict(X_test)), ) ) # Plot the classification probabilities for the different models default_probs = default_model.predict_proba(X_test)[:, 1] f1_probs = f1_model.predict_proba(X_test)[:, 1] jitter = np.random.normal(loc=0.0, scale=0.05, size=f1_probs.shape) colors = plt.get_cmap("tab10").colors fig, axes = plt.subplots(1, 2, figsize=(8, 8), sharey=True) for mask, show_label in zip( [y_test.astype(bool), np.logical_not(y_test)], [True, False] ): for prediction, ax in zip([default_probs, f1_probs], axes): pred_pos = prediction[mask] > 0.5 pred_neg = np.logical_not(pred_pos) _ = ax.plot( y_test[mask][pred_pos] + jitter[mask][pred_pos], prediction[mask][pred_pos], "o", ms=8, color=colors[0], alpha=0.7, label="Predicted positive" if show_label else None, ) _ = ax.plot( y_test[mask][pred_neg] + jitter[mask][pred_neg], prediction[mask][pred_neg], "o", ms=8, color=colors[1], alpha=0.7, label="Predicted negative" if show_label else None, ) for ax in axes: _ = ax.set_xticks([0, 1]) _ = ax.set_xticklabels(["True Negative", "True Positive"], fontsize=16) _ = ax.axhline(0.5, ls=":", color="black", alpha=0.8) _ = ax.set_xlim(-0.4, 1.4) _ = ax.set_ylim(-0.01, 1.01) _ = axes[0].set_ylabel("Probability of positive prediction", fontsize=16) _ = fig.suptitle("Model selection by:", fontsize=18) _ = axes[0].set_title("accuracy", fontsize=18) _ = axes[1].set_title("F1 score", fontsize=18) _ = axes[1].legend( loc="upper center", bbox_to_anchor=(-0.05, -0.05), ncol=2, fontsize=14 ) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 5.545 seconds) .. _sphx_glr_download_auto_examples_plot_balanced_classifier.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_balanced_classifier.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_balanced_classifier.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_