.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/compare_group_lasso_performance.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_compare_group_lasso_performance.py: ============================================================= Rudimentary performance comparison of groupyr and group-lasso ============================================================= This example performs a rudimentary performance comparison of the groupyr and group-lasso packages for various problem sizes. Speedup is defined as the ratio of time to fit a `group-lasso.GroupLasso` model to the time to fit a `groupyr.SGL` model. In addition to `groupyr`, you will need to install the `group-lasso` package using ``` pip install group-lasso ``` .. GENERATED FROM PYTHON SOURCE LINES 17-79 .. code-block:: default import groupyr as gpr import matplotlib.pyplot as plt import numpy as np from group_lasso import GroupLasso from sklearn.model_selection import train_test_split from timeit import timeit from tqdm.auto import tqdm n_features = [5, 10, 25, 50, 75, 100, 150, 200, 250] speedup = [] for n_features_per_group in tqdm(n_features): X, y, groups, coef = gpr.datasets.make_group_regression( n_samples=400, n_groups=50, n_informative_groups=5, n_features_per_group=n_features_per_group, n_informative_per_group=int(0.8 * n_features_per_group), noise=200, coef=True, random_state=10, shuffle=True, ) gl_groups = np.concatenate( [[idx] * len(grp) for idx, grp in enumerate(groups)] ).reshape([-1, 1]) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=10 ) sgl = gpr.SGL(groups=groups, l1_ratio=0.5, alpha=1.0, max_iter=1000, tol=1e-3) gl = GroupLasso( groups=gl_groups, group_reg=0.5, l1_reg=0.5, frobenius_lipschitz=True, scale_reg="group_size", n_iter=1000, tol=1e-3, supress_warning=True, ) gpr_time = timeit("sgl.fit(X_train, y_train)", globals=globals(), number=3) gl_time = timeit("gl.fit(X_train, y_train)", globals=globals(), number=3) speedup.append(gpr_time / gl_time) fig, ax = plt.subplots(1, 1, figsize=(8, 5)) _ = ax.plot(np.array(n_features) * 50, 1 / np.array(speedup)) _ = ax.set_xlabel(r"Number of features", fontsize=16) _ = ax.set_ylabel(r"$t$(group-lasso) / $t$(groupyr)", fontsize=16) _ = ax.set_title( "\n".join([r"Rudimentary performance comparison", r"of groupyr and group-lasso"]), fontsize=16, ) fig.savefig("./groupyr_speedup.pdf", bbox_inches="tight") .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_auto_examples_compare_group_lasso_performance.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: compare_group_lasso_performance.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: compare_group_lasso_performance.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_