############# API Reference ############# *Groupyr* contains estimator classes that are fully compliant with the `scikit-learn `_ ecosystem. Consequently, their initialization, ``fit``, ``predict``, ``transform``, and ``score`` methods will be familiar to ``sklearn`` users. .. currentmodule:: groupyr Sparse Groups Lasso Estimators ============================== These are *groupyr*'s canonical estimators. ``SGL`` is intended for regression problems while ``LogisticSGL`` is intended for classification problems. .. autoclass:: SGL .. autoclass:: LogisticSGL Cross-validation Estimators =========================== These estimators have built-in `cross-validation `_ capabilities to find the best values of the hyperparameters ``alpha`` and ``l1_ratio``. These are more efficient than using the canonical estimators with grid search because they make use of warm-starting. Alternatively, you can specify ``tuning_strategy = "bayes"`` to use `Bayesian optimization over the hyperparameters `_ instead of a grid search. .. autoclass:: SGLCV .. autoclass:: LogisticSGLCV Dataset Generation ================== Use these functions to generate synthetic sparse grouped data. .. currentmodule:: groupyr.datasets .. autofunction:: make_group_classification .. autofunction:: make_group_regression Regularization Paths ==================== Use these functions to compute regression coefficients along a regularization path. .. currentmodule:: groupyr .. autofunction:: sgl_path .. currentmodule:: groupyr.logistic .. autofunction:: logistic_sgl_path Group Transformers ================== These classes perform group-wise transformations on their inputs. .. currentmodule:: groupyr.transform .. autoclass:: GroupExtractor .. autoclass:: GroupRemover .. autoclass:: GroupShuffler .. autoclass:: GroupAggregator .. autoclass:: GroupResampler